
20 The Delphi Magazine Issue 26

Surviving Client/Server:
Custom Dataset Components, 2
by Steve Troxell

Delphi 3 includes a substan-
tially revamped database VCL

and one of the most notable
changes was the total abstraction
of the TDataSet class to remove all
dependencies on the Borland Data-
base Engine for database access.
Delphi developers are now free to
create their own custom dataset
descendants for whatever data
format they like. Last month we
began making our own custom
dataset class around a simple
typed file of records, using Delphi’s
standard file I/O procedures
(Reset, Seek, BlockRead, Block-
Write) as the API for our “data-
base”. In our last exciting episode,
we were able to do all the basic
table navigation commands, book-
mark records, and delete, edit, and
insert records by writing directly
to the record buffer. This month
we’ll add support for TField com-
ponents and data-aware controls.

A True Component
The code we developed last month
wasn’t truly a component in the
sense that it could be installed in
the Component Palette, dropped
on a form, and manipulated
through the Object Inspector. This
month we’ll create a TMyTable non-
visual component to emulate as
much of Delphi’s TTable compo-
nent as is practical. Our TMyDataSet
class will remain a separate entity,
encapsulating the data access,
while TMyTable provides an
interface for that data. Listing 1
shows the code for our TMyTable
component.

As you can see, much of our com-
ponent simply consists of surfac-
ing some methods and properties
from TDataSet, with a few minor
adaptations for our purposes. We
no longer have to preset the table’s
record length since we will be
defining the fields in the table, so
the RecordSize property is not

unit MyTable;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics, Controls, Forms,
Dialogs, Db, MyDS;

type
TMyTable = class(TMyDataSet)
private
FReadOnly: Boolean;

protected
function GetCanModify: Boolean; override; { Derived from TDataSet }

public
property CanModify: Boolean read GetCanModify; { Derived from TDataSet }

published
{ Derived from TDataSet }
property Active;
property AutoCalcFields;
property BeforeOpen;
property AfterOpen;
property BeforeClose;
property AfterClose;
property BeforeInsert;
property AfterInsert;
property BeforeEdit;
property AfterEdit;
property BeforePost;
property AfterPost;
property BeforeCancel;
property AfterCancel;
property BeforeDelete;
property AfterDelete;
property BeforeScroll;
property AfterScroll;
property OnCalcFields;
property OnDeleteError;
property OnEditError;
property OnNewRecord;
property OnPostError;
{ Derived from TMyDataSet }
property TableName;
{ TMyTable Properties }
property ReadOnly: Boolean read FReadOnly write FReadOnly;

end;
procedure Register;
implementation
function TMyTable.GetCanModify: Boolean;
begin
Result := not FReadOnly;

end;
procedure Register;
begin
RegisterComponents('Data Access', [TMyTable]);

end;
end.

➤ Listing 1

published and returns to being a
readonly property in TMyDataSet.
Listing 2 shows the interface to our
TMyDataSet class, with the changes
we’ve made since last month high-
lighted in red.

The Internal Record Buffer
As we saw last month, TDataSet
stores much more than the raw
record data in its internal record
buffers. We’re going to be adding a
bit more this month. Figure 1
shows a diagram of the internal
record buffer and the relative posi-
tions of the various segments. Our

TMyDataSetdescendant keeps track
of each of these segments with
offset values stored in the vari-
ables shown at the bottom of the
diagram.

The contents of these data seg-
ments in the record buffer were
described last month, with the
exception of two new ones we are
adding this month: null flags and
calculated fields.

Null Field Values
In order to take advantage of
Delphi’s data aware controls,
we’re going to need to provide

October 1997 The Delphi Magazine 21

TMyDataSet = class(TDataSet)
private
FBookmarkOffset: LongInt; { Offset to bookmark data in recbuf }
FCalcFieldsOffset: Word; { Offset to calculated fields data }
FCursorOpen: Boolean; { True if cursor is open }
FInternalFile: file; { File variable }
FRecSize: Word; { Physical size of record }
FRecBufSize: Word; { Total size of recbuf }
FExtraRecInfoOffset: Word; { Offset to extra rec info in recbuf }
FTableName: TFileName; { External filename to open }
FNullFlagsOffset: Word; { Offset to null flags in recbuf }

protected
{ basic file reading and navigation }
function AllocRecordBuffer: PChar; override;
procedure FreeRecordBuffer(var Buffer: PChar); override;
function GetCurrentRecord(Buffer: PChar): Boolean; override;
function GetRecord(Buffer: PChar; GetMode: TGetMode; DoCheck: Boolean):
TGetResult; override;

function GetRecordCount: Integer; override;
function GetRecordSize: Word; override;
function GetRecNo: Integer; override;
procedure InternalClose; override;
procedure InternalFirst; override;
procedure InternalLast; override;
procedure InternalOpen; override;
function IsCursorOpen: Boolean; override;
{ bookmarks }
function BookmarkValid(Bookmark: TBookmark): Boolean; override;
function CompareBookmarks(Bookmark1, Bookmark2: TBookmark): Integer;
override;

procedure GetBookmarkData(Buffer: PChar; Data: Pointer); override;
function GetBookmarkFlag(Buffer: PChar): TBookmarkFlag; override;
procedure SetBookmarkData(Buffer: PChar; Data: Pointer); override;
procedure SetBookmarkFlag(Buffer: PChar; Value: TBookmarkFlag); override;
procedure InternalGotoBookmark(Bookmark: Pointer); override;
procedure InternalSetToRecord(Buffer: PChar); override;
{ basic file modification }
procedure InternalInitRecord(Buffer: PChar); override;
procedure InternalEdit; override;
procedure InternalDelete; override;
procedure InternalPost; override;
{ field component stuff }
procedure InternalInitFieldDefs; override;
function GetFieldData(Field: TField; Buffer: Pointer): Boolean; override;
procedure SetFieldData(Field: TField; Buffer: Pointer); override;
procedure InternalAddRecord(Buffer: Pointer; Append: Boolean); override;
{ calculated fields }
procedure ClearCalcFields(Buffer: PChar); override;

protected
FieldOffsets: TList;

public
constructor Create(AOwner: TComponent); override;
destructor Destroy; override;
property RecordSize: Word read GetRecordSize; { from TDataSet }
property TableName: TFileName read FTableName write FTableName;

end;

➤ Listing 2

INTERNAL RECORD BUFFER

PHYSICAL RECORD

DEL
FLAG

NULL
FLAGS

ACCESSIBLE PHYSICAL FIELDS CALCULATED
FIELDS

EXTRA
REC INFO

BOOKMARK
DATA

FNullFlagsOffset
FCalcFieldsOffset
FExtraRecInfoOffset
FBookmarkOffset

FRecBufSize
FRecSize

➤ Figure 1

support for TField components in
our dataset (plus fields are just a
neat thing to have when working
with data). Fields in Delphi have
built in support for null values and
to be truly robust, we should build
in support for null values in our
component. But since we are using
standard Delphi simple datatypes

to store values, how do we indicate
a null value? We can’t simply
choose an arbitrary value like 0 or
-1 or empty string to indicate null
because we would prevent our
users from storing a legitimate
data value in our table.

To solve this, we will add a Long-
Int to the end of each record; each

bit in this region corresponds to a
field in the record. If the bit is set,
then the field is null. If the bit is not
set then the field is not null. Our
dataset code will have to take
these null flags into account when
reading and writing data to the
record.

Notice that our 4 bytes of null
flags impose an arbitrary limit of 32
fields per record. In reality, you’d
have to come up with a more flexi-
ble storage scheme, but this
serves our purposes for now and
keeps the material simple.

Calculated & Lookup Fields
Now that we have an actual TData-
Set descendant component which
we can drop on a form, we auto-
matically inherit the Fields Editor
property editor.

The Fields Editor allows us to
select a subset of fields from the
physical record, rearrange their
order in the dataset, and even set
certain display attributes for the
fields. We can also add entirely
new fields to the dataset by defin-
ing calculated fields, which are
assigned values through the TDa-
taSet.OnCalcRecord event-handler.
Obviously, we’re going to need
some place to store the data values
for the calculated fields. We set
aside a region in the record buffer
immediately after the physical
record to contain all the calculated
fields. Lookup fields are a special
form of calculated field and their
result values are also stored in this
area. Internally, there is no differ-
ence in the representation of a
lookup field and a straight calcu-
lated field.

To support calculated fields, we
must override the ClearCalcFields
method and modify our GetRecord
method to call GetCalcFields to
write the field data in the record
buffer. Both of these modifications
are shown in Listing 3.

External Field Definitions
To support Delphi’s TField compo-
nents, we’re going to need some
definition of fields bound exter-
nally with the table itself. To
accomplish this, we’ll add a dic-
tionary file to go with our data file.
Our dictionary will be a simple text

22 The Delphi Magazine Issue 26

procedure TMyDataSet.ClearCalcFields(Buffer: PChar);
begin
FillChar(Buffer[FCalcFieldsOffset], CalcFieldsSize, 0);

end;
function TMyDataSet.GetRecord(Buffer: PChar; GetMode: TGetMode;
DoCheck: Boolean): TGetResult;

begin
{... lines omitted}
if Result = grOk then begin
GetCalcFields(Buffer);
with PExtraRecInfo(Buffer + FExtraRecInfoOffset)^ do begin
RecordNumber := (FilePos(FInternalFile) div FRecSize) - 1;
BookmarkFlag := bfCurrent;
SetBookmarkData(Buffer, @RecordNumber);

end;
end;

end;

➤ Listing 3

TTestRec = packed record
DelFlag: Byte;
EmpNo: SmallInt;
FirstName: string[15];
LastName: string[20];
HireDate: TDateTime;
DeptNo: string[3];
Salary: Double;
NullFlags: LongInt;

end;

DIC File Contents:
EmpNo ,SMALLINT
FirstName ,STRING ,15 ,NULL
LastName ,STRING ,20
HireDate ,DATETIME , ,NULL
DeptNo ,STRING ,3 ,NULL
Salary ,DOUBLE

➤ Listing 4

file, having the same name as the
data file with the extension DIC.

Listing 4 shows the Delphi
record definition for our data file
(this is how we accessed the fields
in the record last month) and also
shows the dictionary file contents
for the same file.

Each line in the dictionary
describes a field in the table and
each element of the field descrip-
tion is delimited by a comma. The
field name appears first, followed
by the field datatype, followed by
an optional field size, followed by
an optional NULL keyword which
tells us whether the field requires a
value or can be set to null. The field
size in this case only applies to
string fields, since the sizes of the
other datatypes are fixed by defini-
tion (see the help on TField-
Def.Size for other Delphi field
types to which Size applies).

Notice that the DelFlag and Null-
Flags fields are not defined in the
DIC file. That’s because these fields
represent implementation data in
the physical record used to
manage the table. When DelFlag is
nonzero, it denotes a deleted
record. The NullFlags field marks
null values for the fields in the
record. They are not record data
but record overhead. Neither of
these fields should be directly
accessible to the user of the data.
The TTestRec definition describes
the physical record structure,
while the DIC file definition
describes the user-accessible data.

Within TDataSet, there are two
collections of fields to be con-
cerned with. The TDataSet.Field-
Defs property defines the actual
field structure of the table,
regardless of how fields are re-
arranged in the Fields Editor. The
TDataSet.Fields property defines
the persistent fields setup via the
Fields Editor. If no persistent fields
have been defined, then Fields is
filled from, and matches, Field-
Defs.

Our first order of business is to
populate FieldDefs with the actual
field structure of the table when
the table is opened. To do this we
override the TDataSet.Internal-
InitFieldDefs method as shown in
Listing 5.

In the body of this method, we
simply open the DIC file and loop
through all the records there,
building up the FieldDefs structure
as we go along. The local proce-
dure ParseDictRec handles inter-
preting the dictionary record. It
first breaks apart the record into
its constituent attributes with the
GetNextAttribute local function.
GetNextAttribute simply parses a
comma-separated list of items in a
string and returns the leading item
in one string and the remaining list
in another string. If optional trail-
ing attributes are omitted (like the
size attribute), then GetNext-
Attribute simply returns empty
strings.

To create a TFieldDef instance,
we need to specify the field
number, a datatype from
TFieldType, the field’s size, and
whether a value is required for the
field (nulls not allowed). The
remainder of ParseDictRec takes
the information from the diction-
ary record and populates the vari-
ables FieldName, DataType, Size, and
Required as appropriate for the cur-
rent field. Note that even if the field
size is provided in the dictionary,

we ignore it except for those
datatypes to which it is relevant; in
our case only the string fields. We
also set ActualSize in all cases to
the correct size of the physical
field so that we may accumulate
the total size of the physical record
and compute field offsets. Notice
that in the case of strings, Size is
the number of characters that may
be stored in the string and Actual-
Size is one byte longer to account
for the actual physical storage
space consumed by the string.

Back in the main body of Inter-
nalInitFieldDef, we use the infor-
mation set by ParseDictRec to
create an instance of TFieldDef and
bind it to the TDataSet.FieldDefs
property. We also calculate the
total size of the physical record as
we go in FRecSize, remembering to
skip the 1-byte “deleted flag” field
at the start of the record and to
account for the 4-byte “null flags”
field at the end. Notice that before
we add the current field’s size to
FRecSize, it conveniently contains
the offset value to the start of the
current field in the record buffer.
We’ll need this information later on
when we read and write data from

October 1997 The Delphi Magazine 23

the record buffer so we keep a list
of field offsets in our own Field-
Offsets list. Many database APIs
reference fields by field number
rather than offset, so whether you
need to keep track of field offsets
will depend on your database API.

Once we’ve handled the last
field, FRecSize serves as an offset to
the start of the “null flags” field at
the end of the record. So we tuck
this info away in the FNullFlags-
Offset variable and increment
FRecSize to account for the size of
the “null flags” field.

Now all we need to do is make
sure InternalInitFieldDefs gets
called properly from our custom
dataset component. Delphi calls
this method automatically in
design-mode when the Fields
Editor is invoked, but we have to
call it ourselves when the data file
is opened in InternalOpen. Shown
in Listing 6 is how we’ve changed
InternalOpen and InternalClose
since last month.

procedure TMyDataSet.InternalOpen;
begin
AssignFile(FInternalFile, FTableName);
Reset(FInternalFile, 1); { Open a file of bytes }
FCursorOpen := True;
InternalInitFieldDefs; { Populate FieldDefs from external dict }
if DefaultFields then CreateFields; { Populate Fields from FieldDefs }
BindFields(True);
BookmarkSize := SizeOf(TBookmarkInfo);
{ Compute offsets to various record buffer segments }
FCalcFieldsOffset := FRecSize;
FExtraRecInfoOffset := FCalcFieldsOffset + CalcFieldsSize;
FBookmarkOffset := FExtraRecInfoOffset + SizeOf(TExtraRecInfo);
FRecBufSize := FBookmarkOffset + BookmarkSize;

end;
procedure TMyDataSet.InternalClose;
begin
{ Destroy the TField components if no persistent fields }
if DefaultFields then DestroyFields;
{ InternalClose is called by the Fields Editor in design mode, so
the actual table may not be open. }

if FCursorOpen then CloseFile(FInternalFile);
FCursorOpen := False;

end;

➤ Listing 6

Remember that in InternalInit-
FieldDefs we only populate Field-
Defs, not Fields. TDataSet
populates Fields for us when per-
sistent fields are defined through
the Fields Editor.

Our only concern is when no per-
sistent fields have been defined. In
that case, the TDataSet property
DefaultFields is true and we call
TDataSet.CreateFields to have the

physical field definitions created
in Fields.

Next, we call the TDataSet.Bind-
Fields method which scans the
fields and does some initialization
work for calculated, lookup, and
BLOB fields in the dataset. At this
point, the size of the space
reserved in the record buffer for
calculated/lookup fields is known
and can be retrieve through the

➤ Listing 5

procedure TMyDataSet.InternalInitFieldDefs;
var
DictFile: TextFile;
DictRec: ShortString;
FieldNo: Integer;
FieldName: ShortString;
Required: Boolean;
DataType: TFieldType;
Size: Word;
ActualSize: Word;
procedure GetNextAttribute(Rec: ShortString;
var Attribute, OutRec: ShortString);

var I: Integer;
begin
I := 1;
Attribute := '';
OutRec := '';
if Rec = '' then Exit;
while (I <= Length(Rec)) and (Rec[I] <> ',') do begin
if not (Rec[I] in [' ', #9]) then
Attribute := Attribute + Rec[I];

Inc(I);
end;
if I < Length(Rec) then
OutRec := Copy(Rec, I + 1, Length(Rec));

end;
procedure ParseDictRec;
var
DataTypeStr: ShortString;
TempSize: Integer;
Attribute: ShortString;

begin
{ Get field name }
GetNextAttribute(DictRec, FieldName, DictRec);
if FieldName = '' then Exit;
{ Get data type }
GetNextAttribute(DictRec, DataTypeStr, DictRec);
{ Get size }
GetNextAttribute(DictRec, Attribute, DictRec);
TempSize := 0;
if Attribute <> '' then TempSize := StrToInt(Attribute);
{ Get null/not null }
GetNextAttribute(DictRec, Attribute, DictRec);
Attribute := Uppercase(Attribute);
Required := Attribute <> 'NULL';
Size := 0;
ActualSize := 0;
DataTypeStr := Uppercase(DataTypeStr);
if DataTypeStr = 'SMALLINT' then begin
DataType := ftSmallInt;

ActualSize := SizeOf(SmallInt);
end else if DataTypeStr = 'INTEGER' then begin
DataType := ftInteger;
ActualSize := SizeOf(Integer);

end else if DataTypeStr = 'WORD' then begin
DataType := ftWord;
ActualSize := SizeOf(Word);

end else if DataTypeStr = 'SINGLE' then begin
DataType := ftFloat;
ActualSize := SizeOf(Single);

end else if DataTypeStr = 'DOUBLE' then begin
DataType := ftFloat;
ActualSize := SizeOf(Double);

end else if DataTypeStr = 'STRING' then begin
DataType := ftString;
ActualSize := TempSize + 1;
Size := TempSize;

end else if DataTypeStr = 'DATETIME' then begin
DataType := ftDateTime;
ActualSize := SizeOf(TDateTime);

end else
DataType := ftUnknown;

end;
begin
FieldDefs.Clear;
AssignFile(DictFile, ChangeFileExt(FTableName, '.DIC'));
Reset(DictFile);
try
FRecSize := 1; {skip the delete flag field}
FieldNo := 0;
while not System.Eof(DictFile) do begin
ReadLn(DictFile, DictRec);
Inc(FieldNo);
ParseDictRec;
if FieldName <> '' then begin
FieldOffsets.Add(Pointer(FRecSize));
{ store field offset }
Inc(FRecSize, ActualSize);
{ compute our record size }
TFieldDef.Create(FieldDefs, FieldName, DataType,
Size, Required, FieldNo);

end;
end;
FNullFlagsOffset := FRecSize;
Inc(FRecSize, SizeOf(LongInt));
{ Record size includes null flags space }

finally
CloseFile(DictFile);

end;
end;

24 The Delphi Magazine Issue 26

TDataSet.CalcFieldsSize property.
Now all we do is calculate the off-
sets to the various record buffer
segments and, finally, the total size
of the record buffer.

Writing Field Data
When we were modifying data last
month, we simply pulled the entire
physical record buffer into our
application, changed data directly
in the buffer, then posted the
whole buffer back to the table. Now
that we have field definitions set
up, we’re going to have to support
data access via the TField compo-
nents as well. We do this through
TDataSet’s GetFieldData and Set-
FieldData methods, which are
called directly from the TField.
GetData and TField.SetData meth-
ods. So anytime a field is read from
or written to, we handle the I/O
with the record buffer through
these two methods.

Listing 7 shows our implementa-
tion for SetFieldData. A special
consideration must be made for
date/time fields which we will dis-
cuss after covering the general
premise of setting field data in the
record buffer.

TDataSet passes in the TField
component for the field being
modified and a pointer to the
buffer containing the new field
data. If the desire is to set this field
to null, then the buffer pointer is
nil. There are several factors to
consider when manipulating field
data. Is the field part of the
physical record? Is it a calculated
field? Is it set to null? Depending
on the answers to these questions
we may need to reference a
different segment of the record
buffer.

Calculated/lookup fields are
identified by having a field number
of -1. If we know we have a physical
data field, we retrieve its offset
from the FieldOffsets list we built
in InternalInitFieldDef.

If we are setting the field value to
null, then we erase the existing
field data and set the appropriate
null flag. Erasing the actual field
data is not actually necessary but
keeps things tidy.

If we are writing actual data in
the field, then we simply copy the

procedure TMyDataSet.SetFieldData(Field: TField; Buffer: Pointer);
var
Offset,
DataSize: Integer;
StrBuff: ShortString;
NullFlags: ^LongInt;
TimeStamp: TTimeStamp; { TTimeStamp is declared in SysUtils }
DateTime: TDateTime;

begin
if Field.FieldNo <> -1 then begin { a physical field }
{ Cannot set fields while in OnCalcFields handler }
if State = dsCalcFields then DatabaseError(SNotEditing);
Offset := LongInt(FieldOffsets[Field.FieldNo - 1]);
DataSize := Field.DataSize; {?? need this? }
{ Current null flags }
NullFlags := @ActiveBuffer[FNullFlagsOffset];
if not Assigned(Buffer) then begin
{ If setting field to null, clear the field data and set the null flag }
FillChar(ActiveBuffer[Offset], DataSize, #0);
NullFlags^ := NullFlags^ or (1 shl (Field.FieldNo - 1));

end else begin
{ Special handing for date/time fields }
if Field.DataType in [ftDateTime, ftDate, ftTime] then begin
case Field.DataType of
ftDate:
begin
TimeStamp.Time := 0;
TimeStamp.Date := TDateTimeRec(Buffer^).Date;

end;
ftTime:
begin
TimeStamp.Time := TDateTimeRec(Buffer^).Time;
TimeStamp.Date := DateDelta;

end;
else
try
TimeStamp := MSecsToTimeStamp(TDateTimeRec(Buffer^).DateTime);

except
TimeStamp.Time := 0;
TimeStamp.Date := 0;

end;
end;
DateTime := TimeStampToDateTime(TimeStamp);
Move(DateTime, ActiveBuffer[Offset], SizeOf(TDateTime));

end else if Field.DataType = ftString then begin
StrBuff := StrPas(Buffer);
Move(StrBuff, ActiveBuffer[Offset], DataSize);

end else
Move(Buffer^, ActiveBuffer[Offset], DataSize);

{ Set flag to nonnull }
NullFlags^ := NullFlags^ and not (1 shl (Field.FieldNo - 1));

end;
end else begin { a calculated field }
Offset := FCalcFieldsOffset + Field.Offset;
Boolean(CalcBuffer[0]) := not Assigned(Buffer);
if Assigned(Buffer) then begin
Move(Buffer^, CalcBuffer[Offset + 1], Field.DataSize);

end;
end;
if not (State in [dsCalcFields]) then
DataEvent(deFieldChange, Longint(Field));

end;

➤ Listing 7

data from the field buffer into the
record buffer at the appropriate
offset. Notice we have a special
case for string fields. TField
handles strings as null-terminated
strings, so we have to do a conver-
sion since we are storing normal
Pascal length-byte strings. Then
we clear the null flag for the field
(in case it was null before). Finally
we post a field change data event
for the dataset, but only for a
change in physical fields.

If the field being modified is a cal-
culated field, then it’s offset from
the start of the calculated fields
segment of the record buffer is
stored within the TField compo-
nent. Space for a calculated field is
reserved in the calculated fields
segment based on the size

required for its datatype plus one
byte for a null/not null flag. Since
we’re implementing the access to
this field ourselves, we are free to
place the one byte null flag either
at the start or end of the field data.
Since it is simpler to work with it at
the start of the field, we’ll keep it
there.

When the OnCalcFields event-
handler is invoked, the dataset’s
state changes to dsCalcFields. In
this mode, we cannot allow regular
fields to be written to (that is,
regular fields cannot be assigned
values within OnCalcFields). Also,
the dataset’s ActiveBuffer does
not necessarily point to the buffer
containing the fields we are calcu-
lating, so we must ensure that we
are using TDataSet.CalcBuffer,

26 The Delphi Magazine Issue 26

which is setup for us automati-
cally, to write calculated field
values.

If the calculated field is being set
to null, we store a boolean True in
the null flag (again, we can store
anything we want). Otherwise, we
store a boolean False in the null
flag and copy the data from the
field buffer into the record buffer,
remembering to add one to the
offset to skip over our null flag.

Date/Time Fields
When a datetime field is accessed
through a TDateTimeField compo-
nent, Delphi does not expect the
raw record buffer to contain data
formatted for a Delphi TDateTime
variable. Instead, it expects the
raw field data to conform to the
TDateTimeRec type defined in the DB
unit and shown in Listing 8. Basi-
cally this format requires that the
time value represent the number of
milliseconds since midnight and
the date value represent the
number of days since December
31st, 0000 (that is, a date value of 1
means January 1st, 0001).

Since our raw datetime data is a
true Delphi TDateTime variable, we
must translate the TDateTimeRec
data given to us by TDateTimeField.
This seems silly since the data
originated as a TDateTime in the first
place and that’s what we want to
store in our file, but we can’t
override the behavior of TDate-
TimeField, so we must make this
translation. Fortunately, Delphi
provides a number of routines in
the SysUtilsunit to help us convert
the values.

Listing 7 shows the details,
which are based on the actual
translation code in TDateTime-
Field.GetValue.

Reading Field Data
When field data is requested
through a TField component, the
call ends up in TDataSet.GetField-
Data, an abstract method which we
must override. GetFieldData works
similarly to SetFieldData.

The TField component for the
field of interest is passed in along
with a pointer to a buffer where the
field data should be written. The
GetFieldData function returns True

type
TDateTimeRec = record
case TFieldType of
ftDate: (Date: Longint);
ftTime: (Time: Longint);
ftDateTime: (DateTime: TDateTime);

end;

➤ Listing 8

function TMyDataSet.GetFieldData(Field: TField; Buffer: Pointer): Boolean;
{ Get the data for the given field from the active buffer and stick it in given
buffer. Return False if the field value is null; otherwise return True. Buffer
may be nil if TDataSet is checking for null only. }

var
Offset,
DataSize: Integer;
NullFlags: ^LongInt;
TimeStamp: TTimeStamp; { TTimeStamp declared in SysUtils }
DateTime: TDateTime;
RecBuf: PChar;

begin
RecBuf := ActiveBuffer;
if State = dsCalcFields then
RecBuf := CalcBuffer;

if Field.FieldNo <> -1 then begin { a physical field }
{ Check for a null value }
NullFlags := @RecBuf[FNullFlagsOffset];
Result := ((NullFlags^ and (1 shl (Field.FieldNo - 1))) = 0);
{ If value is not null }
if Result and Assigned(Buffer) then begin
FillChar(Buffer^, Field.DataSize, 0);
Offset := LongInt(FieldOffsets[Field.FieldNo - 1]);
DataSize := Field.DataSize;
{ Special handing for date/time fields }
if Field.DataType in [ftDateTime, ftDate, ftTime] then begin
Move(RecBuf[Offset], DateTime, DataSize);
TimeStamp := DateTimeToTimeStamp(DateTime);
case Field.DataType of
ftDate: TDateTimeRec(Buffer^).Date := TimeStamp.Date;
ftTime: TDateTimeRec(Buffer^).Time := TimeStamp.Time;

else
TDateTimeRec(Buffer^).DateTime := TimeStampToMSecs(TimeStamp);

end;
end else begin
if Field.DataType = ftString then begin
DataSize := Byte(RecBuf[Offset]);
Inc(Offset);

end;
Move(RecBuf[Offset], Buffer^, DataSize);

end;
end;

end else begin { a calculated field }
Offset := FCalcFieldsOffset + Field.Offset;
Result := not Boolean(RecBuf[Offset]);
if Result and Assigned(Buffer) then begin
Move(RecBuf[Offset + 1], Buffer^, Field.DataSize);

end;
end;

end;

➤ Listing 9

if field data was returned or False if
the field value is null. Sometimes
GetFieldData is called with a nil
value for the buffer pointer. This
happens when TField is interrogat-
ing the null status of the field (for
example in response to the IsNull
property) and is not interested in
the actual field data.

Again, when OnCalcFields is
active, the dataset state is dsCalc-
Fields and we must read all data

from the CalcBuffer property
rather than the ActiveBuffer prop-
erty. This includes reading values
from physical fields since they will
generally be used to compute new
values and you must ensure that
the physical field data and the cal-
culated field data all come from the
same buffer.

With this in mind, and having
already gone through the details of
SetFieldData, the implementation

procedure TMyDataSet.InternalAddRecord(Buffer: Pointer; Append: Boolean);
begin
Byte(Buffer^) := 0; { reset deleted flag as a precaution }
Seek(FInternalFile, FileSize(FInternalFile));
BlockWrite(FInternalFile, Buffer^, FRecSize);

end;

➤ Listing 10

October 1997 The Delphi Magazine 27

of GetFieldData shown in Listing 9
should be intuitive.

InsertRecord/AppendRecord
TDataSet supports two public
methods, InsertRecord and Appen-
dRecord, which fill all the fields for a
new record and add that record to
the table.

To support these methods, we
must override InternalAddRecord.
This method passes in a pointer to
the record buffer containing the
field data and a boolean flag indi-
cating whether it should be
inserted or appended. In our case,
there is no difference between
inserting or appending a record;
either way the record is actually
appended to the end of the table.

Listing 10 shows the details of
our implementation.

Refresh
When the public method Refresh is
called, TDataSet calls Internal-
Refresh to give us the opportunity
to refresh our database driver buff-
ers (ie, the Borland Database
Engine’s DbiForceReread call)
before it refreshes it’s internal
record buffers. Since we are not
buffering our data in any way out-
side of TDataSet’s internal record
buffers, we don’t need to do
anything in InternalRefresh.

RecordCount
You may have noticed a bug in the
RecordCount property as imple-
mented last month. We simply
retrieved the total number of bytes
in the file and divided by the
number of bytes in one record to
yield the number of records in the
file.

Well, remember that when we
delete records, we only set a flag in
the record and leave the physical
record in the file. Our RecordCount
technique misreports total
records because it includes all the
deleted records as well. Ideally we
would create a header area at the
top of the file and store a field that
keeps track of the total number of
nondeleted records in the table. I
won’t show the implementation for
that because it is specific to our
sample datafile and not worth
taking up the space with here.

Conclusion
That sums up our custom TDataSet
decendant. We now have all the
significant functionality needed to
manipulate data through our own
TMyTable component, including
binding data-aware controls to our
data.

There are a few more odds and
ends, such as handling BLOB
fields, indexes and so forth. Some
of these things are not inherently a
part of TDataSet but are in fact
TTable functions. Note that
although TDataSet does contain
methods and properties to
support filters, they actually do
nothing. Filters are fundamentally
bound to the BDE and if you want
them in your custom datasets,
you’ll have to parse the filter text
and implement the record scan-
ning from scratch.

In any case the foundation laid
here, plus a good look at the source
code for Borland’s TBDEDataSet,
TDBDataSet, and TTable classes will
get you well on your way to making
your own full-fledged custom
datasets.

Next month we’ll take a look at
the new TDecisionCube component
and all it’s sister components.
What can they do for us? How to
we get them to do it? And what will
they do to my performance? See
you next month.

Steve Troxell is a Senior Software
Engineer with TurboPower Soft-
ware. He can be reached by email
at stevet@turbopower.com or on
CompuServe at STroxell.

	A True Component
	The Internal Record Buffer
	Null Field Values
	InsertRecord/AppendRecord
	Refresh
	RecordCount
	Conclusion

